If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+9x-720=0
a = 9; b = 9; c = -720;
Δ = b2-4ac
Δ = 92-4·9·(-720)
Δ = 26001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26001}=\sqrt{81*321}=\sqrt{81}*\sqrt{321}=9\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{321}}{2*9}=\frac{-9-9\sqrt{321}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{321}}{2*9}=\frac{-9+9\sqrt{321}}{18} $
| 1/8=17/20÷x | | 10x^2+5x=45 | | −3x2−5x−8=0 | | x-4)(x-18)=x(x-14) | | 5/5x+4=5/34 | | b/5-7=11 | | 5x+9=2x-188 | | g=54g= | | 10+y+12(5)-10=180 | | (2+y)/4(2+)=(-2+1/y) | | 12x-10=3x+35 | | 0.8=y/5.2 | | 7x-7=14,x= | | 19d+8=-5d+80 | | 4x=13=5x-12 | | 9x-17x=33 | | 6/4=x/14 | | H=-16^2t+28t+60 | | H=-16^2+28t+60 | | x+x/6=245 | | 5n^2-18n-35=0 | | 1.5x=2.6 | | 49n^2-30=7n | | 5(x-3=15+5x | | 5x+14=-19x-8 | | x3+4x2−11x−30=0. | | 2-18x=70 | | 5m^2-7m=-2 | | y+30+y+-30=180 | | (12x+16)+(14x-2)=180 | | (5^2x)-12=113 | | 1/3(p-3)=144 |